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The recently developed magnetic spin-echo small-angle neutron scattering �SANS� technique
provides unique information about the distance correlation of the local vector magnetization as a
function of the spin-echo length within a magnetic material. The technique probes the magnetic
correlations on a length scale from 10 nm up to 10 �m within the bulk of a magnetic material by
evaluating the Larmor precession of a polarized neutron beam in a spin-echo setup. The
characteristics of the spin-echo SANS technique are discussed and compared to those of the more
conventional neutron depolarization technique. Both of these techniques probe the average size of
the magnetic inhomogeneities and the local magnetic texture. The magnetic spin-echo SANS
technique gives information on the size distribution of these magnetic inhomogeneities
perpendicular to the beam and, in principle, independent on the local magnetic induction. This
information is not accessible by the neutron depolarization technique that gives the average size
parallel to the beam multiplied with the square of the local magnetic induction. The basic
possibilities of the magnetic spin-echo SANS technique are demonstrated by experiments on
samples with a strong magnetic texture. © 2006 American Institute of Physics.
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I. INTRODUCTION

Neutron scattering techniques play an important role in
the characterization of inhomogeneities in both magnetic and
nonmagnetic materials. They cover a size range from atomic
distances using normal diffraction,1 to 1–100 nm using nor-
mal small-angle neutron scattering2 �SANS�, and, as demon-
strated recently, extend to 10 nm–10 �m using spin-echo
SANS �SESANS�.3 A related neutron technique, called neu-
tron depolarization �ND�,4–6 also probes the size range from
0.1–10 �m but is only sensitive to magnetic inhomogene-
ities. The mentioned neutron techniques deliver their infor-
mation, however, in different ways: diffraction and SANS
give structural information from the scattered intensity as a
function of the scattering angle. For SANS a size distribution
of the inhomogeneities can be derived from the scattered
intensity as a function of scattering angle. In the ND tech-
nique the total magnetic scattering cross section of a polar-
ized neutron beam is derived from the change in polarization
caused by the transmission of the beam through a magnetic
sample. This change in polarization is a measure for the av-
erage size of the magnetic inhomogeneities. SESANS shows
similarities with both the SANS and the ND techniques and
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measures the change in the polarization of a neutron beam,
caused by the nuclear scattering in a nonmagnetic sample, in
a spin-echo setup. As a result, the detected change in the
polarization can be considered as a Fourier transform of the
angular dependence of the scattered intensity. The change in
the polarization as a function of the scanned spin-echo length
reflects the spatial correlation function, which is related to
the size distribution of the homogeneities.

Recently, an extension of the SESANS technique has
been introduced, which also enables a study of magnetic in-
homogeneities in magnetic samples.7 In the magnetic
SESANS technique the idea that the sample itself can func-
tion as a � flipper was exploited. As a consequence, the
magnetic sample itself replaces the instrumental spin flipper
necessary in any spin-echo setup to invert the phase accumu-
lation. The principle was experimentally demonstrated for
the first time in Ref. 7.

In this article we recognize that the spin flip properties of
the sample depend on variations in the local magnetization
vector within the sample. The resulting neutron scattering
enables us to distinguish the SESANS correlation functions
of the three magnetization components by various settings of
the precession planes in the spin-echo setup. A possible �
flip caused by magnetic scattering creates in some experi-
mental geometries only a � phase change and in some other

geometries an inversion of the phase accumulation, depend-
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ing on the orientation of the � rotation axis with respect to
the precession plane. We will consider the possibilities of the
magnetic SESANS technique in detail to generalize the one-
dimensional nonmagnetic SESANS technique to the three-
dimensional magnetic SESANS technique.

This article first describes in detail the principles of ND
and SANS, then the principles of SESANS, and subse-
quently the characteristics of magnetic SESANS. The mag-
netic SESANS correlation function will be introduced and
possible results compared with ND. Finally, new experi-
ments using both ND and magnetic SESANS on magnetic
foils with a strong magnetic texture are discussed.

II. NEUTRON DEPOLARIZATION AND SANS

Magnetically inhomogeneous systems, such as magnetic
domain structures or local variations in the saturation mag-
netization can be studied by SANS �with or without polar-
ized neutrons� to measure the magnetic correlation length in
the range of 1–100 nm. For larger sizes, up to about 10 �m,
three-dimensional neutron depolarization �3dND� can be
used. For SANS with unpolarized neutrons the macroscopic
magnetic differential scattering cross section �d� /d���Q� of
a single magnetic domain is anisotropic. For a single mag-
netic domain with a uniform domain magnetization M with a
normalized magnetization vector m=M /Ms= �mx ,my ,mz�
and an amplitude �M�=Ms, the purely magnetic scattering is
given by Refs. 1 and 2:

� d�

d�
��Q� =

1

V
�m

2 Vp
2�fm�Q��2�m��Q̂��2, �1�

with

m��Q̂�� = m − Q̂�Q̂ · m� and �m��Q̂��2 = 1 − �Q̂ · m�2,

�2�

where Q=kout−kin is the wave vector transfer and Q̂=Q /Q
is the unit vector of Q �with �Q�=Q�. kin is the wave vector
of the incoming neutron beam �oriented along x� and kout the
elastically scattered neutron beam. For elastic scattering the
lengths of these wave vectors correspond to �kin�= �kout�=k0

=2� /�, where � is the neutron wave length. V=St is the
illuminated sample volume defined by the beam cross sec-
tion S and the sample thickness t. fm�Q� is the form factor of
the single magnetic domain with volume Vp. The magnetic
scattering length density amounts to �m=N0bm, where N0 is
the number density of magnetic atoms and bm the magnetic
scattering length. The magnetic scattering length bm

= ��ne /2h���0Ms /N0�, where �n is the gyromagnetic ratio of
the neutron, e the electron charge, h Planck’s constant, and
�0 the permeability of vacuum. The prefactor of bm amounts
to ��ne /2h�=2.313�1014 T−1 m−2. In SANS experiments
the magnetic scattering length is often expressed as bm

= p0�, where �=Ms /N0 is the average moment per atom
within one domain and p0=2.699 fm/�B is a constant. The

factor �m��Q̂��2 in Eqs. �1� and �2� expresses that there is no

magnetic scattering for Q̂ �m.
In the small-angle approximation �Qx	0� the wave vec-
tor transfer Q is restricted to the yz plane and oriented per-
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pendicular to the incident beam �oriented along x�. Hence,
using Eq. �2� the magnetic scattering from a single domain
�V=Vp� is reduced to

� d�

d�
��Q� = Vp�m

2 �fm�Q��2
1 − �Qymy + Qzmz

Q
�2� . �3�

The total scattering cross section � is now obtained by

� = �
	�

� d�

d�
��Q�d� 

1

ko
2�

−



 �
−



 � d�

d�
��Q�dQydQz. �4�

For isotropic scattering particles the form factor fm�Q�
= fm�Q� only depends on the size of the wave vector transfer.
In this case the integral in the total scattering cross section �
over Qy and Qz can be split up in an integral over Q and over
the angle � in the yz plane, defined by Q= �0,Qy ,Qz�
= �0,Q sin��� ,Q cos����. Then using Eqs. �1� and �3� in Eq.
�4�, we get

� =
Vp�m

2

ko
2 ��

0




�fm�Q��2QdQ���
0

2�

d��m�����2�
= �m

2 �2��� 1

2�
�

0

2�

d��m�����2� = �m
2 �2���1 + �mx

2�
2

� ,

�5�

with �� =
Vp

2�
�

0




�fm�Q��2QdQ . �6�

The latter equation can simply be proven for a spherical or
cylindrical domain and is generally true also for other shapes
with random orientations.

The number of scattering events due to magnetic small-
angle scattering during the transmission of the sample
amounts to �V /S=�t����, where t is the effective sample
thickness that corresponds to �� for a single domain. It is
interesting to note that the total scattering power ��� is in-
dependent of the dimensions of the domain perpendicular to
the beam, and therefore Eq. �5� is also valid for a wide beam
transmitting a large number of parallel domains. The factor
�1+ �mk

2�� /2 is the result of the integration over Qy and Qz

perpendicular to the transmission direction x and expresses
that there is no scattering in the direction of the magnetiza-

tion. The property of having no magnetic scattering for m � Q̂
originates from Maxwell’s law � ·B=0 and is often used to
separate the magnetic and nuclear scatterings. When the ori-
entation of the magnetization m is known from an applied
magnetic field or a strong magnetic texture, then the aniso-
tropy in the scattered intensity allows for a direct determina-
tion of the purely magnetic scattering. For a purely magnetic
scattering of a polarized neutron beam with an initial polar-
ization P0, the polarization of the scattered neutrons Ps�Q� is
given by8

Ps�Q� =
2�m��Q̂� · P0�m��Q̂�

�m��Q̂��2
− P0. �7�

This equation expresses that the polarization of the scattered
neutrons is obtained by flipping the initial polarization P0
over � around the local magnetization direction m.
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For large magnetic inhomogeneities �micron size� the
magnetic form factor fm�Q� indicates that the dominant scat-
tering angles are so small that it cannot be resolved in a
SANS experiment. In this case we can use the 3dND tech-
nique to analyze the change in the polarization from the
added intensity of the transmitted and scattered beams. Ac-
cording to Eq. �7� the magnetic domain scattering causes a
change in the polarization of the neutron beam that can be
used as a measure of the magnetic domain size with Eq. �5�,
as the total scattering power �t gives a measure of ��. This
can be understood from the fact that the transmitted polar-
ization is composed of two terms. The first term is the un-
scattered transmitted beam that did not change its polariza-
tion, and the second term is the scattered fraction of the beam
with
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that changed its polarization according to Eq. �7�. In the
weak-scattering approximation ��t1� this leads to

P = P0�1 − �t� +
t

ko
2�

−



 �
−





Ps�Q�� d�

d�
��Q�dQydQz, �8�

where t=�� for a single domain. This result can easily be
generated for a strong scattering.3,10,11 Combining Eqs. �5�
and �7� we find for the change in the polarization 	P for a
single domain �V=Vp�:

	P = P0 − P = P0�t −
t

ko
2�

−



 �
−





Ps�Q�� d�

d�
�

��Q�dQydQz. �9�

Substituting Eq. �7� in �9� gives
	P = P0�t −
t

ko
2�

−



 �
−



 2�m��Q̂� · P0�m��Q̂� − P0�m��Q̂��2

�m��Q̂��2
� d�

d�
��Q�dQydQz

= 2P0�t −
t

ko
2�

−



 �
−



 2�m��Q̂� · P0�m��Q̂�

�m��Q̂��2
� d�

d�
��Q�dQydQz. �10�

Substituting Eq. �1� in �10� yields

	P = 2P0�t −
2Vt�m

2

ko
2 �

−



 �
−





�m��Q̂� · P0�m��Q̂��fm�Q��2dQydQz

= 2P0�t −
2Vt�m

2

ko
2 
�

0




�fm�Q��2QdQ�
�
0

2�

�m���� · P0�m����d��
= 2P0�t −

�t

��
0

2�

�m�����2d��
�0

2�

�m���� · P0�m����d��
= 2�t�P0 −

2

1 + �mx
2�
�0

2�

�m���� · P0�m����d��� . �11�
For a sample with many domains parallel in the beam with
�mx�= �my�= �mz�=0 this leads to

	P = 2�t��1 −
2�mx

2�
1 + �mx

2�
�P0xîx

+ 
1 −
3�my

2� + �mz
2�

4�1 + �mx
2�� �P0yîy

+ 
1 −
�my

2� + 3�mz
2�

4�1 + �mx
2�� �P0zîz� �12�

In terms of the neutron depolarization, this corresponds to9

	Pii

P0i
� 1 −

Psi

P0i
� c�� − �ii�t = 2�t�1 − �i� �13�
�x =
2�mx

2�
1 + �mx

2�
, �y =

3�my
2� + �mz

2�
4�1 + �mx

2��
, �z =

�my
2� + 3�mz

2�
4�1 + �mx

2��
,

�14�

where �ii is the correlation function of the variation in the
magnetic induction Bi along direction i. The correlation func-
tion of the variation in the vector B corresponds to �=�xx

+�yy +�zz, and the magnetic texture parameters are defined
as �i=�ii /�. The constant c amounts to c= ��L /��2

= �mn /h�2�L
2�2= �2.146�1029��2 m−2, where �=h /mn� is the

neutron velocity, �L=�ne /mn=1.8325�108 s−1 T−1 the Lar-
mor constant, mn the neutron mass, h Planck’s constant, and
e the electron charge.

The scattering length density �m in a magnetic field of
B=�0Ms, produced by a homogeneously magnetized domain
in the absence of stray fields, is directly related to the Larmor

precession frequency �L. The Larmor precession frequency
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amounts to �L=�LB. For B=�0Ms the Larmor frequency is
related to the magnetic scattering length density �m by

�L = � 2h

mn
�� B

�0Ms
��m � � 2h

mn
��m. �15�

The precession in a single domain 	�=��m�� is obtained
from 	�=�L�, where the transmission time amounts to �
=�� /� with a neutron velocity �=h /mn�. It is worthwile to
note that the precession mentioned here has nothing to do
with the polarization change by scattering as introduced in
Eq. �7�. The precession angle reflects the phase change of the
neutron wave over the particle and is therefore proportional
to the particle size ��.

The depolarization of the beam caused by the sample
directly depends on the domain size ��. When the magnetic
sample thickness corresponds to t=N�� with N magnetic do-
mains, then the average magnetic texture components �ml

2�
�i=x ,y ,z� can be determined from the 3dND experiment.
More details about this method were published elsewhere.4–6

The basic difference between SANS and 3dND is that in
scattering one determines the dimensions perpendicular to
the transmission direction ���� and, in principle, independent
of the local magnetic induction, while in depolarization one
determines the dimension parallel to the transmission direc-
tion ���� in the product with the square of the local magnetic
induction. The quantity �� is determined from the Q depen-
dence of the scattered intensity, while �� is determined from
the total magnetic cross section. In this sense both techniques
are fully complementary.

III. SESANS „NUCLEAR SCATTERING…

In SESANS the polarization analysis is only used to
characterize the relatively small scattering angle. The method
is based on the different path lengths a neutron experiences
by traveling through a precession region with parallel bound-
aries inclined by an angle �0 with the neutron transmission
direction, as sketched in Fig. 1. After the transmission
through two of such regions with opposite precession direc-
tions with a scattering sample in between, the final beam is
composed of a transmitted and a scattered part. The polariza-
tion of the scattered part of this neutron beam can be written
as3,10,11

P�Z�
P0

= cos � = cos�ZQz� , �16�

where P0 is the incident neutron beam polarization in a se-
lected direction in the precession plane and P�Z� is the pro-
jected polarization of the scattered beam on the analyzing
direction. In principle, we are able to choose the precession
axis in any direction we want, independent of the direction in
which the spin-echo length Z is varied using polarization
rotators Pr�i� and Pr�j� sandwiched around the sample. For
the moment we choose the z direction as the precession axis.
The quantity Z and the component Qz of the momentum
transfer in the sample between the precession devices can be

10
derived from the geometry
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Z =
c�2L�cot��0���

2�
B and Qz =

4� sin���
�

	
2��s

�
, �17�

where cot��0� has been averaged over the divergence � of
the neutron beam. The spin-echo length Z is an instrumental
quantity that corresponds to the probed correlation length in
the illuminated sample volume. In the small-angle approxi-
mation sin���	�, where � is the Bragg angle. The scattering
angle amounts to �s=2�.

When we also consider the nonscattered neutrons that
pass through the setup, the measured polarization of the
transmitted beam including multiple scattering effects can be
written as3,10,11

P�Z�
P0

= exp�− �t�1 − G�Z��� . �18�

This result is exact with no weak-scattering approximation
and is a generalization of the result obtained for the weak-
scattering approximation ��t1�:

P�Z�
P0

= 1 − �t + �tG�Z� , �19�

where �t is the fraction of elastically scattered neutrons. So
Eq. �18� is valid also in the case of strong scattering. The
SESANS correlation function G�Z� is defined as

G�Z� =
1

�k0
2�

−



 �
−



 � d�

d�
��Q�cos�ZQz�dQydQz, �20�

where k0= �kin�= �kout� is the magnitude of the wave vector of
the incident and of elastically scattered beams.

Recently, the SESANS correlation function G�Z� has
been identified as a projection of the correlation function
��r�=��x ,y ,z� for the variation in the nuclear scattering

12

FIG. 1. Principles of the spin-echo setup for small-angle neutron scattering.
A neutron beam passes from left to right through the setup. After being
polarized in P, its polarization is rotated over � /2 to the �x ,z� precession
plane. Then the polarization precesses in the precession regions I and II in
parallel or opposite directions depending on the sign of F of the instrumental
flipper expressed in B2=F B1. Sandwiched around the sample two polariza-
tion rotators �Pr�i� and Pr�j�� are mounted to change the precession axes at
the sample into the x, y, or z direction and rotate the direction j back to the
initial precession direction. After another rotation over � /2, the neutrons
pass through the analyzer A, and are detected. The inclined precession faces,
which make an angle �0 with the x axis, cause the precession angle in
regions I and II to be strongly dependent on the incident angle of the neu-
tron. In the absence of a scattering sample S the two precession angles
cancel each other if F=−1. However, even a small scattering angle disturbs
the echo, which can be detected and analyzed from the final polarization. It
should be noted that the technique is insensitive to the divergence of the
incoming neutron beam. Only the shadowed areas in the precession regions
cause the inclination effect, while the remaining parts do not contribute.
length density along the beam direction:
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G�Z� = �
−





dx��x,0,Z���
−





dx��x,0,0� �21�

with

��x,y,z� =
1

V
� �

V
� dx�dy�dz�

�	��x�,y�,z��	��x� + x,y� + y,z� + z� , �22�

where 	��x ,y ,z�=��x ,y ,z�− ���. The definition of ��x ,y ,z�
in Eq. �22� leads to a value of ��0,0 ,0�= �	�2�, where �	�2�
is the volume average of the square variation in the scatter-
ing length density. The normalized correlation function now
corresponds to ���x ,y ,z�=��x ,y ,z� /��0,0 ,0�
=��x ,y ,z� / �	�2�. Using these equations, model calculations
of G�Z� can be done analytically for some standard particle
shapes. One finds G�Z�=1 for Z=0 and G�Z�=0 for Z→
.
The total scattering cross section � amounts to

� = �2�
−





dx��x,0,0� � 2�2��0,0,0��� = �2�	�2���

�23�

with

�� =
1

2

�−


 ��x,0,0�dx

��0,0,0�
=

1

2
�

−





���x,0,0�dx , �24�

where �� is the nuclear correlation length for the variation in
the scattering length density along the beam. The effective
size of the inhomogeneities along the neutron beam corre-
sponds to �� =2��. The average number of scattering events
amounts to �t=�2�	�2���t.

The essential property of the SESANS method is that the

FIG. 2. �a� Effect of a � flip around an axis in the precession plane. Real-
izing that before and after the flip the precession direction remains the same
because the field has not changed, the precession phase of the neutrons with
�1, which were behind in phase compared to �2 before flipping, has an
advanced phase after flipping. �b� A � flip around the precession axis y itself
creates only a � phase shift.
phase accumulation of the neutron spins reverses between
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the precession devices. This can only be achieved by a sud-
den change in the field direction or by a � flip around an axis
that is in the precession plane of the polarization. This can be
understood from Fig. 2 �left� where we sketch the spin direc-
tions of neutrons with wavelengths �1 and �2 with accumu-
lated phases in the first precession device, proportional to the
wavelength, before and after the � flip in the precession
plane. A � flip around an axis perpendicular to the precession
plane does not change the sign of phase accumulation, but
only changes the precession phase by �.

IV. CHARACTERISTICS OF MAGNETIC SESANS

Consider now the case that we have an unmagnetized
magnetic sample in the SESANS setup. The average polar-
ization of the scattered neutrons in this case at the wave
vector transfer Q can be derived from Eq. �7� by skipping all
linear terms in m�i and is given by

Ps�Q� = � 2�m�x�Q̂��2

�m��Q��2
− 1�P0xîx + � 2�m�y�Q̂��2

�m��Q��2
− 1�

�P0yîy + � 2�m�z�Q̂��2

�m��Q��2
− 1�P0zîz. �25�

This formula shows that in an unmagnetized sample ��mx�
= �my�= �mz�=0�, the polarization of the scattered neutrons
does change its direction with the sign and amplitude of its
components. Dependent on the magnitude of the magnetiza-
tion components, a spin flip may occur that changes the
phase accumulation. In textured materials where one of the
magnetization components is smaller than the others, we see
from Eq. �25� that a spin flip occurs in one or two polariza-
tion components, changing also the phase accumulation in
the spin echo.

We will now evaluate Eq. �25�, assuming that the P0

components in the precession plane possess a precession
phase � at the sample position. For example, in the xy pre-
cession plane we find

P0x = P0 sin��� ,

P0y = P0 cos��� . �26�

In the second arm of the spin-echo setup another precession
angle � is subtracted with an instrumental spin flip �F=−1�
or added without an instrumental spin flip �F=1�. These two

settings for the instrumental spin flip in the second spin-echo
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arm probe the non-spin-flip �NSF� and the spin-flip �SF�
scattering in the sample. At the detector we analyze the y
component of the polarization resulting for the unscattered
neutrons in

P = P cos��� − FP sin��� ,
0d�F 0y 0x

flipper and the spin flip caused by the magnetic scattering.
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P0d�F=−1 = P0�cos2��� + sin2���� = P0,

P0d�F=+1 = P0�cos2��� − sin2���� = P0 cos 2� . �27�

For the polarization of the scattered neutrons with the wave
vector transfer Q as given in Eq. �25�, we obtain the follow-

ing in a similar way:
Psd�Q� = �Psy�Q�cos � − FPsx�Q�sin ��

= P0y� 2my�
2 �Q̂�

�m��Q̂��2
− 1�cos � − FP0x� 2m�x

2 �Q̂�

�m��Q̂��2
− 1�sin �

= P0� 2my�
2 �Q̂�

�m��Q̂��2
− 1�cos2 � − FP0� 2m�x

2 �Q̂�

�m��Q̂��2
− 1�sin2 �

= P0�−
m�z

2 �Q̂�

�m��Q̂��2
cos 2� +

�m�y
2 �Q̂� − m�x

2 �Q̂��

�m��Q̂��2
� if F = 1

= P0�−
m�z

2 �Q̂�

�m��Q̂��2
+

�m�y
2 �Q̂� − m�x

2 �Q̂��

�m��Q̂��2
cos 2�� if F = − 1. �28�
More generally, for a precession axis along i=x ,y ,z we ob-
tain

Psi�F=−1�Q̂� = P0�Ai�−�Q̂� + Ai�+�Q̂�cos 2�� � P0Ai�−�Q̂� ,

�29�
Psi�F=+1�Q̂� = P0�Ai�−�Q̂�cos 2� + Ai�+�Q̂�� � P0Ai�+�Q̂� .

Because � is proportional to the neutron wavelength �, the
spread in the wavelength of the beam leads to an averaging
out of the cos�2�� term for large precession angles
��cos�2���	0 for ��0� resulting in

Ai�−�Q̂� =
− mi�

2 �Q̂�

�m��Q̂��2
,

Ai�+�Q̂� =
mj�

2 �Q̂� − mk�
2 �Q̂�

�m��Q̂��2
, �30�

where i� j�k and j corresponds to a direction in the pre-
cession plane about which the instrumental � rotation takes
place �the y axis in Eq. �28��. Equation �30� can be rewritten
in the more general form

AiF�Q̂� =
1 − F

2 
− mi�
2 �Q̂�

�m��Q̂��2
� +

1 + F

2 
mj�
2 �Q̂� − mk�

2 �Q̂�

�m��Q̂��2
� ,

�31�

with i, j, and k as described above. The flip parameter F
indicates an instrumental spin flip for F=−1 and no instru-
mental spin flip for F= +1.

Equation �31� reflects the sensitivity of the measured
amplitudes for the spin flip occurring in the instrumental
For a selected precession plane a measurement with and
without an instrumental spin flip probes the magnetic texture
of the sample from the amplitude of the measured signals.

To probe all the mentioned possibilities it is required to
change the precession planes at the sample position. In the
present setup we realized the precession xy and zx planes by
introducing simple polarization rotators in front of and be-
hind the sample position �see Fig. 1�.

V. MAGNETIC SESANS CORRELATION FUNCTION

It is clear that the difference in sensitivity of the spin-
echo signal on components of the variation in the local vec-
tor magnetization, summarized in Eq. �31�, has consequences
for the magnetic correlations measured in a system with both
nuclear and magnetic inhomogeneities. We therefore con-
sider, in analogy with the nuclear SESANS correlation func-
tion in Eqs. �19� and �20�, a magnetic SESANS correlation
function GiF�Z�. The measured polarization of the transmit-
ted beam can be written as

PiF�Z�
P0

= exp�− �t�1 − GiF�Z��� . �32�

This is the generalization of the result obtained for the weak-
scattering approximation:

PiF�Z�
P0

= �1 − �t� + �tGiF�Z� = 1 − �t�1 − GiF�Z�� , �33�

where the magnetic SESANS correlation function GiF�Z�

corresponds to
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GiF�Z� =
1

�k0
2�

−



 �
−





AiF�Q̂�� d�

d�
��Q�cos�ZQz�dQydQz

=
1

�k0
2�

−



 �
−



 � 1 − F

2 
− mi�
2 �Q̂�

�m��Q̂��2
� +

1 + F

2 
mj�
2 �Q̂� − mk�

2 �Q̂�

�m��Q̂��2
�� �

Vp
2

V
�m

2 �fm�Q��2�m��Q̂��2 cos�ZQz�dQydQz

=
1

�k0
2

Vp
2

V
�m

2�− �1 − F

2
��

−



 �
−





�fm�Q��2mi�
2 �Q̂�cos�ZQz�dQydQz

+ �1 + F

2
��

−



 �
−





�fm�Q��2�mj�
2 �Q̂� − mk�

2 �Q̂��cos�ZQz�dQydQz� . �34�

In real space the magnetic SESANS correlation function GiF�Z� can be translated to

GiF�Z� =
− ��1 − F�/2��−



 dx�ii�x,0,Z� + ��1 + F�/2��−


 dx�� j j�x,0,Z� − �kk�x,0,Z��

�i�
−





dx�ii�x,0,0�
, �35�
where i� j�k and k corresponds to a direction that makes
� /2 with the symmetry axis between the two precession re-
gions. Although Eq. �35� has been derived for a nonmagne-
tized sample, it can be shown that it is also valid for a mag-
netized sample. In the latter case a term with sin�2�� enters
in Eq. �28� and �29� and that averages out to zero at a large
precession angle �. The correlation length determined with
Eq. �35� is, in principle, independent of �m that contains the
local magnetic induction B.

The magnetic correlation function �ij�r�=�ij�x ,y ,z� for
the variation in the vector components of the scattering
length density �B= ��m /�0Ms�B is defined as

�ij�x,y,z� = �	�B,i�0,0,0�	�B,j�x,y,z��

= � �m

�0Ms
�2

�	Bi�0,0,0�	Bj�x,y,z��

=
1

V
� �m

�0Ms
�2� �

V
� dx�dy�dz�

�	Bi�x�,y�,z��	Bj�x� + x,y� + y,z� + z� ,

�36�

where �ij�x ,y ,z� generally forms a 3�3 matrix. The defini-
tion of �ij�x ,y ,z� in Eq. �36� leads to a value of �ij�0,0 ,0�
= ��m /�0Ms�2�	Bi	Bj�, where �	Bi	Bj� is the volume aver-
age of the variation in 	Bi	Bj. The normalized correlation
function now corresponds to �ij� �x ,y ,z�=�ij�x ,y ,z� /
�ij�0,0 ,0�=�ij�x ,y ,z� / ���m /�0Ms�2�	Bi	Bj��. For an un-
magnetized sample �B�=0, and therefore 	Bi=Bi. For
sample geometries that do not produce magnetic stray fields,
the magnetic induction is directly related to the magnetiza-
tion by B=�0M=�0Msm.

The magnetic correlation function �ij�x ,y ,z� can be
linked directly to the correlation parameters �ij and �=�xx
+�yy +�zz probed in a neutron depolarization experiment:
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�ij =
1

V
� �

V
� �

−





dx�dy�dz�dx

�	Bi�x�,y�,z��	Bj�x� + x,y�,z��

= � �m

�0Ms
�−2�

−





dx�ij�x,0,0� ,

� =
1

V
� �

V
� �

−





dx�dy�dz�dx

��B�x�,y�,z�� · �B�x� + x,y�,z��

= � �m

�0Ms
�−2
�

−





dx�xx�x,0,0� + �
−





dx�yy�x,0,0�

+ �
−





dx�zz�x,0,0�� , �37�

where �ij and � are in units of mT2. For random domain
orientations �ij =0 for i� j. The total scattering cross section
for the unpolarized neutron beam can also be written in
terms of the correlation functions and results in similar ex-
pressions as given already in Eq. �5�:

� = �2
�
−





dx�xx�x,0,0� + �
−





dx�yy�x,0,0�

+ �
−





dx�zz�x,0,0��
= �2� �m

�0Ms
�2

� � 2�2��xx�0,0,0� + �xx�0,0,0�

+ �xx�0,0,0���� = �2 ���B�2�
��0Ms�2�m

2 �� . �38�

VI. COMPARISON BETWEEN MAGNETIC SESANS
AND 3dND

With 3dND the correlation parameters �ij �i=x ,y ,z� are
determined from the measured depolarization. The magnetic

domain size �� is in fact determined by the total magnetic
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cross section ��������. The average square components in
the reduced magnetization �mi

2� can be directly related to the
magnetic texture parameters �i=�ii /�, which give additional
information on the spread in the orientation of the magnetic
domains. From a 3dND experiment, in principle, not more
than a mean size of the inhomogeneity in the transmission
direction �� and, in addition, the directions of the local mag-
netization can be determined, with the restriction that �0Ms

and the sample thickness t are known. By varying some ex-
ternal parameters such as the transmission angle, additional
information about the inhomogeneity size in the other direc-
tions can be obtained.

In magnetic SESANS, in principle, the distribution of
the inhomogeneities can be determined, independent of the
sample thickness t and the spontaneous magnetic induction
�0Ms from the dependence of the signal on the spin-echo
length Z. When t and �0Ms are known then the size of the
inhomogeneities in the beam direction can be determined in
absolute numbers from the cross section of the sample that
determines the polarization level at Z→
. Both techniques
determine some quantities in a different way, but are comple-
mentary in the details that can be seen from a sample in
study. However, magnetic SESANS is an extension to neu-
tron depolarization, as it also gives information about the
size distribution of the inhomogeneity in addition to the av-
erage size.

To verify our findings above we have investigated some
extreme magnetized samples. We investigated three different
samples with a local magnetization confined in the x, y, and
z directions. For the x-magnetized sample we used an elec-
trodeposited Ni layer on a copper sheet that appears to create
a domain structure that, for 90% of the volume, has its local
magnetization perpendicular to the sheet. For the sample
with its local magnetization in the ±y direction, we used an
amorphous ribbon under stress in the y direction that appears
to give the required domain structure. The same sample was
used for the z magnetization by rotating the sample over 90°
around the x axis.

A. Angle dependent depolarization experiments on a
magnetized layer

The sample was positioned in a polarized beam, as
shown in Fig. 3. The magnetization of the domains is di-
rected perpendicular to the layer and coincides with the x

FIG. 3. �a� Sketch of the magnetic layer in the neutron depolarization setup.
The polarized beam passes the foil in the x direction, with the polarization
directed in the x, y, or z direction by the polarizer P. The polarization com-
ponent Dz has been analyzed successively in the analyzer A. �b� Sketch of
the model with a layered magnetic domain at �=0, oriented parallel to the x
direction and distributed in the yz plane at angle � with the y axis.
direction at �=0. The layer itself can be rotated about the z
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direction. The change in polarization caused by such a layer
is described by13

Dz���,�,�� =
1

A�,�
sin�A�,��� + �1 − ��cos�A�,��� , �39�

where �= �−1�N�tan � /�−N�+1− �−1�N /2, with

� = �/�d cos���� and N = Integer�tan���/�� ,

�40�

A�0,� =
��

v sin���cos���
,

which leads to a depolarization component in the z direction
of

Dz��,�m,�� = �
�m

�/2

P���Dz���,�,��d� . �41�

The quantity A�,� corresponds to the mean rotation angle of
the polarization on passage through one domain and P���
describes the distribution of domain directions as experi-
enced by the neutrons. Figure 3�b� shows that P��� is deter-
mined by parallel layers of domains with an orientation � in
the xz plane and that �=�0 /cos��� for a flat distribution of �
between �m���� /2. The minimum �m in � accounts for
the fact that the layers are not flat to infinite y values but
have an average length/thickness ratio of about 1 /�m, due to
the curvature of the spaghetti structure. In the depolarization
experiments this can only be observed in the y direction �Fig.
3�b��. Figure 4 shows the z component of the polarization
measured on the electroplated Ni layer together with a cal-
culated curve when � is averaged over an angle from �m

=0.15 to � /2. The fitted depolarization curve shows no sen-
sitivity for a distribution width of �0 around the average
value of 1.8 �m. A distribution in �0 up to 60% full half-
width gave a good agreement with the experimental results
within the experimental errors.

B. Magnetic SESANS on a double Ni layer

SESANS experiments have been carried out on the same
Ni layer to compare these results with the depolarization re-
sults and to investigate, together with other uniaxial domain

FIG. 4. Measured Dz as a function of the transmission angle � of the neutron
beam �open squares� in a double nickel layer on both sides of a copper sheet.
The solid line gives a fit of the data to Eq. �21�, with two layers of thickness
d=16.5 �m, an average domain width �0=1.8 �m, and a layer size in the yz
plane of about six times �0.
structures, the characteristic properties of magnetic
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SESANS. Figure 5 shows the experimental results for a pre-
cession around the y direction with an instrumental spin flip
�F=−1� and without �F=1�.

In the normal spin-echo mode �F=−1� we observe in
Fig. 5�a� a signal with no Z dependence but with a significant
reduction in the polarization to 0.6 of the initial value with-
out the sample �not shown�. The constant polarization here
reflects the transmission of the unscattered neutrons. The
scattered neutrons are fully depolarized, as can be predicted
from Eqs. �31� and �42� with Ay�−=0 and Ay�+=−1. The re-
duction in polarization to 60% is caused by the purely mag-
netic scattering from the domains magnetized in the plus and
minus x direction. This magnetic scattering, however, causes

FIG. 5. �a� Measured SESANS signal in the normal spin-echo mode with an
instrumental spin flip. �b� Measured SESANS signal without an instrumental
spin flip. The magnetic scattering itself causes a spin flip around the x axis
according to Fig. 2. The measured polarization P can be directly related to
Gy�F�Z�, with Z determined by the instrumental quantities cot��0�=10, �
=0.2 nm, and the magnetic field varying between 0 and 0.15 T. In �a� the
magnetic scattering is not echoed �F=−1� and leads to a fully depolarized
contribution to P, which is the actual depolarization from 1 to 0.6 over the
whole Z range. In �b� only the magnetic scattering �F= +1� contributes to
the echo and should be maximal at Z=0, which corresponds to the 40%
missing in �a�. The signal measured at low Z without a sample has to be
attributed to a nonperfect canceling of the nonechoed signal because in this
region the total rotation angle is relatively small. In �c� the SESANS signal
is calculated with the same distribution of domains as described in Fig. 4 but
with different distributions in the domain width as shown in the insert of this
figure.
a complete depolarization according to Eqs. �29� and �31�
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when Ay�−=0. The magnitude 0.4 for the magnetic scattering
follows from the depolarization to 0.6 in the mode with F
=−1. The structure of the magnetic scattering appears when
the instrumental spin flip is in the F= +1 mode, i.e., Ay�+=
−1, as shown in Fig. 5�b�. The polarization of the unscattered
beam is here fully damped according to Eqs. �29� and �31�,
while the magnetic scattering has a full amplitude of Ay�+=
−1. Because we have no z magnetization we only measure
the SESANS correlation function Gy�−�Z� of the x magneti-
zation. From Fig. 5�b� it is difficult to estimate the value at
Z=0. The reason for this is that at the lower Z values the
admixing of the polarization of the unscattered neutrons,
which is not fully damped out, prohibits such a determina-
tion �� in Eq. �29� is not very large�. However, from the
results in Fig. 5�a� one may state that P�0� should be 0.4.
The results in Fig. 5�b� can be compared with a calculated
signal in Fig. 5�c�, where the SESANS signal is shown with
the same domain geometry of Fig. 4 that was used to inter-
pret the depolarization results in Fig. 3. The calculation was
done using Eq. �35�, with the model shown and described in
Fig. 3�b�. However, to fit the SESANS results we needed
extra information about the domain size distribution that
could not be derived from the depolarization results. Figure
5�c�, with a flat distribution of width 	d /d=0.3 �width at
half-height amounts to 0.6� gave about the same damped
wave as observed in the measurements. These measurements
demonstrate that magnetic SESANS gives essential new in-
formation about the distribution of domain sizes that could
not be deduced from the neutron depolarization measure-
ments.

To demonstrate the flipping properties of the magnetic
scattering, we performed, in addition to the previous experi-
ments on the nickel layer, experiments on the domain struc-
ture in an amorphous foil under stress. The latter is charac-
terized by a uniaxial local magnetization parallel to the stress
direction.

In Fig. 6�a� the results are shown for the SESANS ex-
periments with a y precession axis and an instrumental spin
flip in the F=−1 mode. The sample is magnetized in the z
direction. This magnetization direction allows only a scatter-
ing for Qy �0 and is characterized by Ay�−=0 and Ay�+=−1.
The contribution for F=−1 is fully damped to a constant
polarization of about 65% of the unscattered neutrons.

In Fig. 6�c� the results are shown for the same instru-
mental settings, as in Fig. 6�a�, except that the instrumental
spin flip has been put in the F= +1 mode. In this case the
polarization of the unscattered neutrons is fully damped be-
cause there is no echo in this mode. The scattered neutrons
with Qy �0 underwent a spin flip, and the argument in the
cosine of Eq. �34� is zero. As a result, we see a flat Z depen-
dence with an amplitude that corresponds to just the mag-
netic scattering of about 35%.

In Fig. 6�b� the results are shown for the same instru-
mental settings, as in Figs. 6�a� and 6�b�, but for the sample
magnetization rotated into the y direction. We have Ay�−=
−1 and Ay�+=0. Now we have the interesting case that the
magnetic scattering has no extra spin flip but only an extra �
rotation �negative sign of Ay�−=−1� with respect to the un-

scattered neutrons. This means that the magnetic contribution

o AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp



073902-10 Rekveldt et al. Rev. Sci. Instrum. 77, 073902 �2006�
is in antiphase with respect to the unscattered neutrons. So
here we already have an amplitude that is equal to the am-
plitude of the unscattered neutrons diminished with the am-
plitude of the magnetic scattered neutrons at Z=0. In the
figure we indicated as dashed and dotted lines the levels of
the unscattered neutrons and the difference of unscattered
and magnetically scattered neutrons as derived from the pre-
vious figures. That the levels do not coincide perfectly with
the measurements in this figure must be attributed to experi-
mental errors, such as occur in the � rotation of the scattered
neutrons that are very sensitive to the local magnetization
directions and the orientation of the precession plane at the
sample position. With increasing Z we see a damping of the
magnetic contribution as an increase of the total level to
about 0.70 of the unscattered neutrons. In Fig. 6�d� all the
signals are damped to zero because there is no � flip causing
echoing for either of the signals �Ay�+=0�.

VII. DISCUSSION

In the study of magnetic materials it appears that mag-
netic SESANS gives additional information to the more clas-
sical neutron depolarization. The basic difference between
SANS �SESANS� and 3dND is that in SANS one determines
the domain sizes perpendicular to the transmission direction
����, while in 3dND one determines the magnetic cross sec-
tion that is proportional to the average domain size parallel
to the transmission direction ���� in the product with the
square of the local magnetic induction �0Ms.

In analogy with 3dND where information can be ob-
tained about the local magnetization texture, magnetic
SESANS enables one to do a similar job. By measuring suc-
cessively with the xy, yz, and zx precession planes, the spin-
flip properties of the different magnetization components al-
low for a separation of the different scattering contributions.

The sensitivity ranges of both techniques are fully de-
pendent on the magnetic scattering cross section that both

FIG. 6. SESANS measurements with��a� and �b�� an instrumental spin flip
�F=−1� and ��c� and�d�� without an instrumental spin flip �F= +1�. Note the
two arrows in �b� indicating the change of sign in the magnetic contribution
to the unscattered fraction because of a � phase change. The dashed and
dotted lines indicate the levels of the unscattered fraction and the difference
of unscattered and magnetic scattered fractions, respectively.
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scale with the square of the neutron wavelength and are
therefore comparable. When using a neutron wavelength of
�=0.2 nm, domain size distributions can be studied up to
several microns. Selecting the wavelength and the sample
thickness, one can optimize the sensitivity for smaller and
larger magnetic inhomogeneities. However, where mixed
nuclear and magnetic scattering both occur, large differences
between the two can cause problems in the determination of
the individual terms..

Another point of concern that may affect the interpreta-
tion of measurements on large inhomogeneities is the valid-
ity of the Born approximation used in the derivation and
definition of the SESANS correlation function and the depo-
larization formula. In the formulation of the SESANS func-
tion G�Z� in Eqs. �20�–�22�, but also in the derivation of the
depolarization formula in Eqs. �11�–�13�, we have assumed
that the Born approximation �BA� applies, which means that
the phase change of the beam over one inhomogeneity is
smaller than 1. For very large inhomogenities �larger than
10–20 �m�, we arrive at the edge where the BA can be
applied without corrections. The validity of the Born ap-
proximation can be estimated from the deviation of sin�x� /x
from 1, with x as the phase change over one single inhomo-
geneity. In our measurements on the Ni layer with a wave-
length �=0.2 nm the factor sin�x� /x is larger than 0.9, which
demonstrates that the BA is valid. At larger inhomogeneities
one has to account for the large phase changes in the inho-
mogeneity itself.
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